

Town of Moultonborough
Board of Selectmen
Work Session Agenda
Thursday, February 27, 2025
5:00 P.M.
6 Holland St. Moultonborough, NH

I. CALL TO ORDER

II. PLEDGE OF ALLEGIANCE

III. URGENT ACTION ITEMS

- A. Lakes Region Mutual Fire Aid Communication Center Application for Congressionally Directed Spending

IV. DISCUSSION ITEMS

- A. Sewer Expansion Study (w/guests Mark Borrin and Ray Korber)
- B. Grade/Step Plan
- C. FY '26 Market Adjustments
- D. New Town Administrator Search Process
- E. Reimagining the
 - i. Community Technology Fund
 - ii. Road Improvement Fund
 - iii. Branley Report

V. CITIZEN INPUT

VI. ADJOURNMENT

Any person with a disabling condition who would like to attend this public meeting and needs to be provided reasonable accommodations to participate please contact the Moultonborough Town Hall at 603-476-2347 so accommodations can be made. Interested parties may view this meeting by going to Town Hall Streams.

DRAFT

Dear Senator Shaheen

Senator Hassan

Congressman Pappas

We write to express our staunch support for the Lakes Region Mutual Fire Aid Association's application to request congressionally directed spending for the Lakes Region Mutual Fire Aid (LRMFA) Critical Infrastructure Move. This initiative is critical to ensure the continued effectiveness and integrity of emergency response services across our region.

The decision by State to sell the Dwinnell Building in Laconia has imposed a significant financial burden on the Lakes Region Mutual Fire Aid (LRMFA), requiring them to cover moving expenses and purchase new equipment, totaling approximately \$1 million. This unexpected cost places immense financial strain on member communities, with each facing an additional assessment of around \$26,000, threatening the viability of smaller municipalities and potentially undermining the mutual aid system. Without additional funding, the relocation will severely impact emergency response capabilities, jeopardizing the safety of firefighters, residents, and visitors throughout the region.

We would like to highlight the following factors that underscore the importance of this funding:

- **Massive Financial Burden:** The sale of the Dwinnell Building in Laconia has imposed an overwhelming financial burden on the LRMFA, amounting to an estimated \$1 million. This sum encompasses the costs of relocation and the purchase of essential new equipment, expenses that were initially anticipated to be covered at no cost to LRMFA.
- **Relocation Costs:** The entire responsibility for relocation expenses has now been thrust upon LRMFA, resulting in an additional assessment of about \$26,000 per community. This unexpected financial burden is too challenging for many communities to manage, justifying the need for supplemental funding through Congressionally Directed Spending.
- **Economic Strain on Communities:** The economic strain imposed by the additional financial burden risks bankrupting smaller municipalities within the LRMFA system, while larger ones may be forced to reconsider their participation in the mutual aid system. This financial strain threatens to destabilize and diminish the effectiveness of emergency response services across the region, jeopardizing public safety and the well-being of residents, firefighters, and visitors in these communities.
- **Threat to Mutual Aid System Integrity:** The financial challenges undermine the integrity of the mutual aid system, which relies on the collaboration and support of multiple communities and agencies. The mutual aid system is essential for coordinated and efficient emergency response.
- **Impact on Emergency Response Capabilities:** Without the necessary additional funding, the relocation will severely compromise the emergency response capabilities of the LRMFA. This jeopardizes the safety of firefighters, residents, and visitors by potentially causing delays, communication breakdowns, and a significant reduction in response

effectiveness in an area of the State in which considerable tourism revenue is generated and the demand for emergency services is continually rising during peak tourism times.

- **Public Safety Risks:** The financial strain and resulting operational challenges pose significant risks to public safety. Delays or gaps in emergency response capabilities could put lives at risk, making it imperative to secure funding to ensure the LRMFA can continue to provide critical services such as Fire, EMS, and HAZMAT emergency dispatching and coordination.

Your unwavering support for New Hampshire fire departments has been pivotal in securing federal funding for essential equipment, apparatus, and training. Your dedication has significantly enhanced public safety and bolstered the emergency response capabilities of our fire service, ensuring that our firefighters are well-equipped to protect their communities.

Considering the critical challenges outlined above, we urge you to champion the request for congressionally directed spending for the Lakes Region Mutual Fire Aid Critical Infrastructure Move. This funding is crucial to sustaining the safety and well-being of our communities and ensuring that LRMFA can continue to deliver the important level of emergency response communication services that our residents depend on.

Thank you for your attention to this urgent matter. Please feel free to contact Mr. David Bengtson, the Fire Chief/Emergency Management Director for the Town at dbengtson@moultonboroughnh.gov if we may provide any further information.

Sincerely,

Kevin D. Quinlan, Chair

Jonathan W. Tolman, Vice Chair

Karel A. Crawford, Selectman

James F. Gray, Selectman

Charles M. McGee, Selectman

MEMORANDUM

To: B. Woodruff, Moultonborough

From: R. Korber, KVPartners

Date: 6/2/14

Re: Small Community On-Site Wastewater Systems

The following is a brief outline of key considerations and success factors for constructing, operating and maintaining a community on-site wastewater system. This outline is intended as general background information only.

What are the choices?

- Decentralized on-site wastewater treatment systems include individual systems (1 service connection), small cluster systems (2-5 service connections) or large cluster systems (over 5 service connections). Systems typically include conveyance structures, septic tank(s) and soil treatment/dispersal unit(s). Conveyance structures can be gravity pipe (typically PVC) or pressure pipe (typically HDPE) with grinder pumps or some combination of both. Pre-treatment (between the septic tank and soil treatment/dispersal unit) may be required or desired and typically includes aeration, constructed wetlands or media filters.
- A good community wastewater treatment system doesn't necessarily mean one wastewater treatment option. A combination of individual and group systems may be the best solution. Communities may incorporate individual systems and cluster systems under one management plan.
- The best solutions incorporate management and long-term maintenance of all systems in the area under a well defined legal authority (property owners association, district, municipality). All customers should be expected to participate in a structured management program that includes monitoring and maintenance and that ensures the long-term financial viability of the system.

Key considerations:

- The community character (urban, rural, etc.) and values (natural resource protection is priority, pro- or anti-growth/development), etc.
- Management plan; how will the system be maintained and managed in the long-term?
- Alternate technologies including individual and cluster systems, gravity and low pressure sewer systems, etc. Consider combinations of technologies that will be efficient in cost and operation.
- A full assessment of the current situation including but not limited to: status of current systems, soil conditions, lot sizes, issues related to surface and groundwater in the area, topography, environmental constraints, service area, land use, property ownership and easements/acquisitions requirements, property owner cooperation, ability to establish viable management structure, financial capability to build and operate the system, etc.

- A look at the future including but not limited to: community goals, land use planning, potential growth of service area, etc.
- Regulatory compliance requirements (design, construction, operation).

General community wastewater management goals:

- System has adequate capacity for the immediate and predicted future service area.
- Cost (capital and operation/maintenance) is affordable.
- System protects the environment and public health.
- System is consistent with community character, values and goals.
- System is well managed. Well managed systems: provide access to all system components by qualified/trained wastewater systems personnel; reduce the long-term costs of operation and maintenance; lengthen the system life-cycle; increase system reliability and improve system performance.
- System is financially viable for the long-term.
- System users/rate payers are well informed.

Process for project implementation:

- Complete necessary evaluations to document public health and environmental issues/concerns and project benefits, challenges and opportunities.
- Develop a public education and outreach program to garner community support for a community wastewater project. Educate and inform the public and solicit feedback. Select a community "champion" for the project who will serve as the local representative for moving the initiative forward.
- Establish and commit to a management structure (private or public) for facility construction, operations and maintenance.
- Complete a facilities plan outlining project requirements and basis of design of the preferred wastewater system.
- Evaluate financing requirements and third party funding opportunities for facility construction.
- Upon community and regulatory agency acceptance of facilities plan, proceed with design development of the selected wastewater system.
- Complete all design, permitting and regulatory compliance requirements.
- Advertise the project for bid, select a contractor and complete the construction of the wastewater system.
- Complete an operations and management plan for the facilities.

In areas served by municipal wastewater facilities, sewage is transported away from homes in large diameter gravity sewers to a central plant where it is treated and discharged into a waterway. Outside of these areas, most individual residences must rely on a septic tank and soil absorption field, or on-site system, to dispose of their wastewater.

Cluster systems bridge the gap between these two systems in small communities where neither of the first two systems is feasible.

The Case for Improved Small Community Wastewater Service

There are an estimated 800,000 residences and small businesses in Indiana which are not connected to a centralized sewage treatment facility. The Indiana State Department of Health has stated that as many as 200,000 of these have an inadequate means of sewage disposal. This is a significant public health concern, especially for the 700 or so small unsewered communities in the state. Many of these are older communities that never really planned for sewage disposal; in fact, several have direct discharges or connections to town drains due to a lack of such planning. They often cannot solve the problem using individual on-site systems due to small lots that are poorly suited for on-site systems. Such problems will continue until cost efficient technologies are made available to these communities. Communities expanding into rural areas also need these new technologies so that additional sewage disposal problems are not created.

A centralized wastewater system is an excellent solution in larger densely populated areas, since the cost of a municipal sewage system is lower if it can be distributed over a larger number of users. However, centralized treatment systems operated by small communities often perform poorly because the expertise and funding is not be available to update and maintain the facilities. In fact, sewerered small communities which treat and discharge wastewater account for most non-compliance violations, according to the U.S. Environmental Protection Agency. It would seem, therefore, that non-discharging decentralized wastewater treatment systems, or "cluster systems," should be carefully considered for this type of community. In an April 1997 report to Congress on the Use of Decentralized Wastewater Treatment Systems, the U.S. EPA stated that, "Adequately managed decentralized wastewater systems are a cost-effective and long-term option for meeting public health and water quality goals, particularly in less densely populated areas." This support of alternative on-site systems for small communities is a major shift from previous national policies.

Over the past 25 years the nation has made significant strides in addressing the wastewater treatment needs of communities across the country. But enormous wastewater treatment needs remain — especially in small communities. EPA's 1996 Clean Water Needs Survey estimated that small communities need an additional \$13.8 billion to comply with the Clean Water Act by the year 2016. Nearly \$8 billion in government funding has already been provided to small communities for wastewater treatment projects since 1992.

Cluster systems transport wastewater via alternative sewers to either a conventional treatment plant or to a pretreatment facility followed by soil absorption of the effluent. Cluster systems can be environmentally sound, financially responsible solutions for small community wastewater problems, where conventional central treatment systems are not practical or affordable and where individual on-site systems are inappropriate because of site or soil limitations.

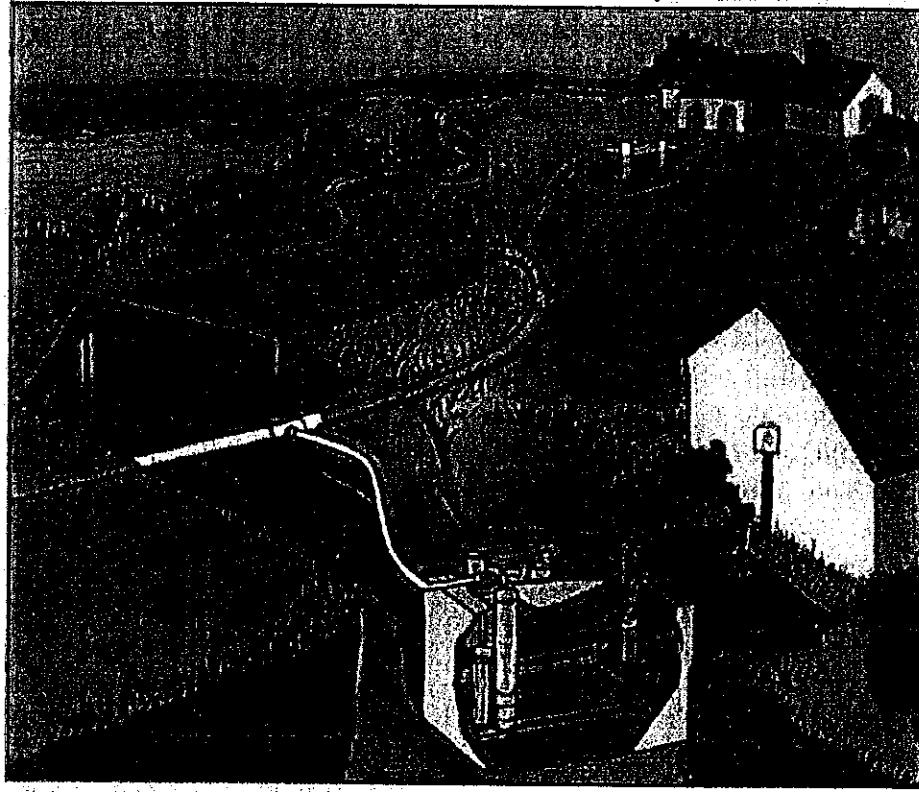
This publication will focus on alternatives to conventional large-diameter gravity sewers and on pretreatment and soil absorption, rather than treatment/discharge systems. It will discuss the various components of a cluster system, their advantages and disadvantages, and management needs to ensure their proper operation. The community and financial procedures necessary to plan, build, and maintain a cluster system will also be covered.

Components of a Cluster System

Cluster systems, as discussed in this publication, collect wastewater from a small number of homes, usually 2 to 10, and transport it via an alternative sewer to a pretreatment and land absorption area with no surface discharge of effluent. Within this description, the options can be divided into the following categories: collection, pretreatment, final soil absorption, and management of the system.

Collection Options

Alternative sewer systems use plastic pipes that are typically smaller in diameter than conven-


tional sewer pipes because the wastewater is first treated (in a septic tank or grinder pump, for example) so that large, solid materials are separated out or ground into smaller pieces. An advantage of alternative sewers is that the small plastic pipes used in their construction makes it less likely that water will infiltrate into the sewer, a common problem with large-diameter sewers. Infiltrated water adds to the load on the treatment facility or the final absorption of the treated effluent, which can reduce the degree of treatment, the life of the system, and lead to environmental contamination. Small-diameter flexible plastic pipes can also be easily routed around trees and other obstacles, which can simplify construction, minimize disruption to the area, and save money.

Several types of alternative sewer systems — pressure, small-diameter gravity (SDG), and vacuum sewers — can be used to collect and transport wastewater. Pressure sewers are the most popular alternative collection systems, and either pump septic tank effluent or utilize a

grinder pump by replacing the septic tank with a smaller sump and pump. SDG systems use septic (interceptor) tanks at the home to remove the settleable and floatable solids prior to their entry into the sewer. This minimizes sewer clogging and minimizes the need for higher flow velocities to keep solids in suspension, allowing the use of small-diameter sewers to transport the effluent. Vacuum sewers (VS) utilize a central vacuum source that draws wastewater and air through collection pipes to the central collection point. Vacuum systems have historically been the least used of the three alternatives in the U.S., but their use has increased substantially in the past few years as the technology has improved.

Pressure Sewers and Pumps

Pressurized alternative sewer designs are appropriate for hilly or extremely flat terrain, shallow bedrock, high water table, or anywhere the costs and environmental impact of excavating for traditional gravity sewers would be prohibitively expensive. Pressure sewer systems have different operation and maintenance requirements than

STEP systems use septic tanks to remove larger solids and small pumps to transport the sewage effluent.

conventional sewer systems because they use pumps with controls and rely on electricity. The pumps are relatively small and run only a few minutes a day, so little energy is used.

Pressure sewers are subdivided into grinder-pump (GP) systems, which shred sewage solids before pumping, and septic tank effluent pumping (STEP) systems, which use septic tanks located at the residence to remove grit, grease, and settleable solids prior to pumping. Pressure is created in the line by the wastewater pumped into the pipes at the home connections. Since wastewater flow is not dependent on gravity, the pipe can follow the contour of the land and be placed in shallow trenches just below the frost line. Grinder pumps are more expensive to operate than STEP systems, but may cost less to install. Both types of pressure systems use less costly cleanouts instead of manholes as access points for cleaning and monitoring the lines. Both GP and STEP systems have been widely used in North America and in many European and Asian countries.

A grinder pump system receives sewage from the home rather than a septic tank. A grinder pump in the chamber works similarly to a garbage disposal, in that solid materials in the wastewater are cut into very small pieces. Wastewater is then pumped through a pressurized line. Grinder pumps are usually larger than the effluent pumps used in STEP systems and turn on and off according to the liquid levels in the pumping chamber.

A STEP system consists of a septic tank to remove solids from the wastewater and a small pump to push the tank effluent through the system to final disposal. The effluent pump is located in a pumping chamber either located inside the septic tank or next to the tank outlet. As effluent from the tank enters the pumping chamber, it triggers a high-water sensor, which starts the effluent pump. The effluent is then pumped into the effluent sewer line until the water level in the chamber drops and another sensor shuts the pump off. Sensors also trigger an alarm if effluent levels get too high in the pumping chamber.

Because the effluent is relatively free from larger solids, sewers can be as small as 1.5 inches in diameter for the pipes leading from the service

connection, and two or three inches for the mains. This is in comparison to large-diameter conventional sewers, which are often eight inches or more in diameter.

Small-Diameter Gravity Sewer Systems

Small-diameter gravity sewer (SDGS) systems are another alternative sewer option for small communities. SDGS systems are also known as effluent or variable-grade sewers. SDGSs are a good low-cost alternative to conventional gravity sewers.

Like conventional sewers, SDGS systems use gravity, rather than pumps or pressure, to collect and transport wastewater to a facility for final treatment or to empty into a conventional sewer main. Like STEP systems, SDGS use septic tanks to remove most of the solids from the wastewater so the sewers transport relatively solids-free effluent. SDGS sewers can be smaller in diameter than conventional sewers but need to be somewhat larger (usually three or four inches in diameter) than those used for pressure sewers. SDGS can be laid at variable grades like pressure systems as long they are placed below frost line and the elevation of the source is the highest point in the pipe.

Vacuum Sewers

Vacuum sewers rely on suction, created at a central pumping station and maintained in the small diameter mains, to draw and transport wastewater through the system to final treatment. But because they have limited capabilities for transporting wastewater uphill (a maximum of about 20 feet), they are better suited for areas with flat or gently rolling terrain.

Since the vacuum in the sewer is drawn by vacuum pumps at a central pumping station, the components needed at the individual connections are relatively simple. Most vacuum systems do not require vacuum toilets or any special plumbing inside the house. When the wastewater in a small holding tank at the home reaches a certain level, a sensor opens a pneumatic valve and the tank contents are sucked into the line by the vacuum in the sewer main. The valve stays open a few seconds to also allow some air to be sucked

in after the wastewater. The alternate plugs of wastewater and air from many connections can follow the contour of the land, traveling through the main to the central pumping station.

The initial force of the vacuum removing the wastewater from the valve pit is usually enough to break up solids in the wastewater, so relatively small-diameter (three- to four-inch) plastic pipe can be used for the service connection with four- to 10-inch mains.

Pretreatment Options

The pretreatment facility in a cluster system is often a larger version of ones found in some individual on-site systems, such as aeration, constructed wetlands, or media filters, followed by dispersal of the treated effluent into a soil absorption system. Because of the soil absorption field, cluster systems require more land area than municipal treatment systems that discharge.

There are a variety of alternative on-site pretreatment technologies being tested and installed nationwide. Recirculating media filters, where wastewater is circulated through the filter to aerate the wastewater with the effluent returned to the pump chamber to mix with incoming low-oxygen wastewater from the septic tank, are widely used to enhance nitrogen removal and pathogen reduction and to lower absorption area requirements.

Advances also are being made by engineered absorption components. The sand or gravel used in filters is being replaced with lightweight artificial media that can be fabricated at a factory and quickly installed at the site. These technologies will reduce installation labor and speed installation.

Final Disposal Options

Some alternative sewer systems empty into a conventional sewer main that leads to a centralized municipal treatment facility. This may be the most cost-effective plan for communities that have this option. However, many small communities do not have a wastewater treatment plant nearby or it may be too small to handle the extra wastewater flow. There are several other treat-

ment alternatives for these communities to consider. If a proper site and soil area can be located nearby, it may be practical to disperse the effluent from septic tank effluent pump systems and small diameter gravity sewers in a large community subsurface soil absorption field similar to the smaller ones used for individual homes with septic systems. Usually this effluent is first treated in a pretreatment unit as discussed above to improve the performance of the soil system. Wastewater from vacuum and grinder pump collection systems must first be settled in a large septic tank, and often passed through a pretreatment system as well before going to a soil absorption field.

There are a number of alternatives to conventional trench and mound soil absorption systems. Alternatives to aggregate for the absorption field trenches, such as chambers and gravel-less trenches, while slightly more expensive, are attractive to both homeowners and installers because of the ease of transport, quick installation and elimination of the need for large amounts of aggregate. In several states, drip irrigation systems are being used because of their ability to place small amounts of wastewater effluent a few inches below the ground surface where nutrients can be taken up by plants in the lawn rather than leaching into groundwater.

Advantages and Disadvantages of Cluster Systems

Advantages

Cluster systems have a number of advantages:

- Cost
- Flexibility in land use
- Maintenance
- Environmental protection

Cost

Conventional sewer and treatment systems in Indiana can cost \$20,000 or more per household (2000 prices), and can result in monthly sewage bills of over \$100. The design and construction of the sewage collection system is often responsible for two-thirds or more of the cost. Much of this is

due to the large-diameter gravity sewers, which must be laid on grade and can require very deep excavations or a number of lift stations.

Small-diameter plastic pipes used in alternative systems are less expensive and easier to install than conventional sewer pipes. Pressurized sewers don't rely on gravity to operate, so they can be buried at shallow depths, just below the frost line, and follow the natural contours of the land, saving on excavation costs.

Flexibility in Land Use

County planning agencies sometimes cite the soil and site limitations of traditional on-site systems as the justification for halting development in unsewered areas and to defend land-use plans. Alternative on-site technologies have the potential to allow land-use decisions to be determined more by issues such as roads, schools, hospitals, and other important criteria. Cluster wastewater systems may permit smaller lot sizes and provide planners with a tool to better preserve the green areas and rural character of small communities. These features are frequently lost when large, gravity sewers are installed and high-density development follows, or if large lot sizes are required for individual on-site sewage disposal systems.

Maintenance

Complex sewage treatment processes require expertise often not found in rural locations. When workers acquire this expertise through training and experience, they often have an opportunity for higher salaries in nearby cities. Therefore, treatment systems that require larger land areas, but less complex operation and maintenance (O&M) are often attractive for small communities. Such systems minimize the need for process understanding and rely more on the mechanical aptitude of an O&M staff, which is more often available in rural settings.

Environmental Protection

Many small communities with centralized sewage treatment systems are having difficulties in meeting required discharge limits. According to the EPA, sewerered small communities with dis-

charge of treated wastewater represented over 90 percent of non-compliance violations in 1999. Since many of these small community systems discharge to high quality, low flow streams, local environmental impacts can be disproportionately high. Non-discharging, decentralized wastewater treatment systems can provide an environmentally sound alternative for these communities.

Disadvantages

The primary disadvantage of cluster systems has to do with the amount of operation and maintenance needed. While usually not complicated, alternative sewers have components that conventional sewers do not have, such as septic tanks that need to be inspected and pumped and mechanical parts and controls that use electricity. These require more frequent and regular maintenance than conventional sewers. They also are located on site, requiring workers to travel to individual homes or businesses. This may, however, be more than offset by higher operational costs at more complex central treatment facilities.

Clusters require a somewhat complex organizational structure in order to make community decisions such as fee collection and continuing education of homeowners about wastewater issues. Homeowner cooperation is much more important than with municipal systems since smaller systems are less resilient and less tolerant of periodic large flows or larger than normal loadings of household chemicals than in large systems, where these peaks are averaged out over a very large user base.

Other disadvantages with alternative sewers include disruptions in service due to mechanical breakdowns and power outages. Also, systems may be poorly designed, installed, or overpriced if engineers or contractors have little experience with alternative technology. Poor design and installation of alternative sewers can result in higher than expected O&M costs.

Managing Cluster Systems

With traditional on-site systems, maintenance is left up to the homeowner who typically pays little attention to the system until it begins to fail.

Innovative systems require more homeowner awareness as well as regular maintenance procedures.

Preventative maintenance is important with this technology because an overloaded septic tank or broken pump at one connection can potentially affect other parts of the system. Depending on the size of the system, communities may need a full-time maintenance employee or staff to ensure that the system is being properly operated and maintained and to handle emergencies. There are several models for providing maintenance for cluster systems. All systems require that workers have access to the user's property to inspect septic tanks and effluent baffles or filters on a routine basis and to pump tanks as needed. Regular maintenance is also necessary to ensure proper performance of the pretreatment and final disposal.

Remote monitoring may have a place in managing decentralized on-site systems, and small community systems that are too small to have on-site operators present at all times. Advanced on-site monitoring systems typically use "control boxes" that turn electric pumps on and off, monitor septic tank levels, and sound an alarm when an unusual condition occurs. The alarm connects to a panel in the house. The homeowner must then contact a repairman. Remote sensing could also be used to send a signal from the home directly to a central monitoring office. In more complex systems, the communication can even be interactive so that pump dosing frequencies could be changed, along with other system controls, from a remote base.

Creating a Management Structure

The physical maintenance of decentralized on-site systems is not as difficult to establish as are the legal and financial arrangements needed to ensure that maintenance is accomplished and that homeowners pay their fair share of the costs in doing so. The policies and procedures that must be put in place with cluster systems can be more complex than with municipal sewer systems. The establishment of a management entity for decentralized projects is necessary in order to apply for federal, state, or other funding, minimize liability,

establish service boundaries, and to manage the administrative, financial, and operational activities for the services provided. Acceptable management entities include counties, incorporated cities and towns, special governmental units (county-wide or area-wide regional sewer districts, conservancy districts, etc.), public or private utilities, private corporations, and nonprofit organizations. Each management entity has certain advantages and disadvantages and comes with its own set of guidelines for formation and oversight by regulatory authorities. Community leaders that are evaluating the use of decentralized cluster systems must decide which management entity would be most beneficial for their project.

Rural electric cooperatives have extensive management expertise, and in some areas (parts of Alabama and Minnesota) have become involved in managing on-site wastewater systems in their service area. Control systems, standard for electric utilities, are just emerging in the wastewater field. This type of management can ensure that the wastewater system is serviced promptly and properly. Regular inspection and interaction of service personnel with the homeowners can foster a common concern for protecting the systems from harsh chemicals or other practices that could disrupt the system, increase O&M costs, and affect water quality.

The design, construction, and management of sewage collection and treatment works, including decentralized cluster systems, for counties, incorporated cities and towns, sewer districts, and conservancy districts, are under the regulatory authority of the Indiana Department of Environmental Management (IDEM). If your community is not an incorporated city or town, and your county does not have a program for extending sewers to your area, you may want to investigate the advantages of forming a regional sewer district or conservancy district. To obtain information on the formation and management of a regional sewer district or conservancy district, contact the IDEM Regional Water Sewer District Coordinator, at 317-233-0476 or 1-800-451-6027.

MEMORANDUM – OFFICE OF THE HUMAN RESOURCE DIRECTOR

TO: Board of Selectmen

FROM: Robin Reade, HR Director

RE: Step and Grade Scale

DATE: February 24, 2025

CC: Carter Terenzini, Interim Town Administrator

The office of Human Resources is looking to revive the previous Step and Grade Scale used by the Town several years ago. By updating this wage scale, it will assist the Department Heads, Human Resources, and the Select Board, on decision-making when it comes to wages. The goal would be to continue with the wage study and bring employees into alignment with where they should be on this scale and to assign them to the appropriate step for their position.

This tool has not been utilized by the Town for several years now, making it difficult to calculate wages when hiring new employees, increasing yearly wages, and providing reasonable value to the job positions in the Town.

This current Step and Grade scale for 2025 shows a 4% market rate adjustment and it maintains the 3% between steps.

We will continue to keep this updated yearly and going forward there will be no guessing on where an employee belongs on the scale.

COPY**COPY**

WAGE SCALE (4%COLA) : 7/1/2025
THIS SCALE SHOWS 3% INCREASE BETWEEN STEPS

Grades:	Step 1		Step 2		Step 3		Step 4		Step 5		Step 6		Step 7		Step 8		Step 9		Step 10		
	2024	2025	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual												
			**	2025	**	2025	**	2025	**	2025	**	2025	**	2025	**	2025	**	2025	**		
I	\$ 14.39	\$ 14.97	\$ 29,939.91	\$ 15.42	\$ 32,071.64	\$ 15.88	\$ 33,033.79	\$ 16.36	\$ 34,024.80	\$ 16.85	\$ 35,045.54	\$ 17.35	\$ 36,096.91	\$ 17.87	\$ 37,179.82	\$ 18.41	\$ 38,295.21	\$ 18.96	\$ 39,444.07	\$ 19.53	\$ 40,627.39
II	\$ 15.21	\$ 15.82	\$ 31,635.54	\$ 15.67	\$ 32,584.61	\$ 16.14	\$ 33,562.15	\$ 16.62	\$ 34,569.01	\$ 17.12	\$ 35,606.08	\$ 17.63	\$ 36,674.26	\$ 18.16	\$ 37,774.49	\$ 18.71	\$ 38,907.72	\$ 19.27	\$ 40,074.96	\$ 19.84	\$ 41,277.21
III	\$ 16.30	\$ 16.96	\$ 33,912.52	\$ 16.79	\$ 34,929.90	\$ 17.30	\$ 35,977.80	\$ 17.82	\$ 37,057.13	\$ 18.35	\$ 38,168.85	\$ 18.90	\$ 39,313.91	\$ 19.47	\$ 40,493.33	\$ 20.05	\$ 41,708.13	\$ 20.65	\$ 42,959.37	\$ 21.27	\$ 44,248.15
IV	\$ 17.41	\$ 18.11	\$ 36,213.73	\$ 17.93	\$ 37,300.14	\$ 18.47	\$ 38,419.15	\$ 19.02	\$ 39,571.72	\$ 19.60	\$ 40,758.87	\$ 20.18	\$ 41,981.64	\$ 20.79	\$ 43,241.09	\$ 21.41	\$ 44,538.32	\$ 22.06	\$ 45,874.47	\$ 22.72	\$ 47,250.71
V	\$ 18.53	\$ 19.27	\$ 38,539.16	\$ 19.08	\$ 39,695.34	\$ 19.66	\$ 40,886.20	\$ 20.25	\$ 42,112.78	\$ 20.85	\$ 43,376.17	\$ 21.48	\$ 44,677.45	\$ 22.12	\$ 46,017.77	\$ 22.79	\$ 47,398.31	\$ 23.47	\$ 48,820.26	\$ 24.18	\$ 50,284.86
VI	\$ 19.63	\$ 20.42	\$ 40,832.09	\$ 20.22	\$ 42,057.05	\$ 20.83	\$ 43,318.76	\$ 21.45	\$ 44,618.33	\$ 22.09	\$ 45,956.87	\$ 22.76	\$ 47,335.58	\$ 23.44	\$ 48,755.65	\$ 24.14	\$ 50,218.32	\$ 24.87	\$ 51,724.87	\$ 25.61	\$ 53,276.61
VII	\$ 20.74	\$ 21.57	\$ 43,141.58	\$ 21.36	\$ 44,435.82	\$ 22.00	\$ 45,768.90	\$ 22.66	\$ 47,141.96	\$ 23.34	\$ 48,556.22	\$ 24.04	\$ 50,012.91	\$ 24.77	\$ 51,513.30	\$ 25.51	\$ 53,058.70	\$ 26.27	\$ 54,650.46	\$ 27.06	\$ 56,289.97
VIII	\$ 21.84	\$ 22.71	\$ 45,418.56	\$ 22.49	\$ 46,781.12	\$ 23.17	\$ 48,184.55	\$ 23.86	\$ 49,630.09	\$ 24.58	\$ 51,118.99	\$ 25.31	\$ 52,652.56	\$ 26.07	\$ 54,232.14	\$ 26.86	\$ 55,859.10	\$ 27.66	\$ 57,534.87	\$ 28.49	\$ 59,260.92
IX	\$ 22.96	\$ 23.88	\$ 47,756.41	\$ 23.65	\$ 49,189.10	\$ 24.36	\$ 50,664.78	\$ 25.09	\$ 52,184.72	\$ 25.84	\$ 53,750.26	\$ 26.62	\$ 55,362.77	\$ 27.42	\$ 57,023.65	\$ 28.24	\$ 58,734.36	\$ 29.08	\$ 60,496.39	\$ 29.96	\$ 62,311.28
X	\$ 24.07	\$ 25.03	\$ 50,069.42	\$ 24.79	\$ 51,571.50	\$ 25.54	\$ 53,118.65	\$ 26.30	\$ 54,712.21	\$ 27.09	\$ 56,353.57	\$ 27.91	\$ 58,044.18	\$ 28.74	\$ 59,785.51	\$ 29.61	\$ 61,579.07	\$ 30.49	\$ 63,426.44	\$ 31.41	\$ 65,329.24
XI	\$ 25.32	\$ 26.33	\$ 52,658.16	\$ 26.08	\$ 54,237.91	\$ 26.86	\$ 55,865.05	\$ 27.66	\$ 57,541.00	\$ 28.49	\$ 59,267.23	\$ 29.35	\$ 61,045.25	\$ 30.23	\$ 62,876.60	\$ 31.14	\$ 64,762.90	\$ 32.07	\$ 66,705.79	\$ 33.03	\$ 68,706.96
XII	\$ 26.16	\$ 27.20	\$ 54,405.38	\$ 26.94	\$ 56,037.54	\$ 27.75	\$ 57,718.67	\$ 28.58	\$ 59,450.23	\$ 29.44	\$ 61,233.73	\$ 30.32	\$ 63,070.74	\$ 31.23	\$ 64,962.87	\$ 32.17	\$ 66,911.75	\$ 33.13	\$ 68,919.11	\$ 34.13	\$ 70,986.68
XIII	\$ 27.38	\$ 28.47	\$ 56,948.82	\$ 28.20	\$ 58,657.28	\$ 29.05	\$ 60,417.00	\$ 29.92	\$ 62,229.51	\$ 30.82	\$ 64,096.40	\$ 31.74	\$ 66,019.29	\$ 32.69	\$ 67,999.87	\$ 33.67	\$ 70,039.86	\$ 34.68	\$ 72,141.06	\$ 35.72	\$ 74,305.29
XIV	\$ 28.49	\$ 29.62	\$ 59,249.36	\$ 29.34	\$ 61,026.84	\$ 30.22	\$ 62,857.64	\$ 31.13	\$ 64,743.37	\$ 32.06	\$ 66,685.68	\$ 33.02	\$ 68,686.25	\$ 34.01	\$ 70,746.83	\$ 35.03	\$ 72,869.24	\$ 36.08	\$ 75,055.31	\$ 37.17	\$ 77,306.97
XV	\$ 29.62	\$ 30.80	\$ 61,599.68	\$ 30.50	\$ 63,447.67	\$ 31.42	\$ 65,351.10	\$ 32.36	\$ 67,311.63	\$ 33.33	\$ 69,330.98	\$ 34.33	\$ 71,410.91	\$ 35.36	\$ 73,553.24	\$ 36.42	\$ 75,759.83	\$ 37.52	\$ 78,032.63	\$ 38.64	\$ 80,373.61
XVI	\$ 30.80	\$ 32.04	\$ 64,070.45	\$ 31.73	\$ 65,992.56	\$ 32.68	\$ 67,972.34	\$ 33.66	\$ 70,011.51	\$ 34.67	\$ 72,111.85	\$ 35.71	\$ 74,275.21	\$ 36.78	\$ 76,503.47	\$ 37.88	\$ 78,798.57	\$ 39.02	\$ 81,162.53	\$ 40.19	\$ 83,597.40
XVII	\$ 31.83	\$ 33.10	\$ 66,197.48	\$ 32.78	\$ 68,183.40	\$ 33.76	\$ 70,228.90	\$ 34.78	\$ 72,335.77	\$ 35.82	\$ 74,505.84	\$ 36.89	\$ 76,741.02	\$ 38.00	\$ 79,043.25	\$ 39.14	\$ 81,414.55	\$ 40.32	\$ 83,856.98	\$ 41.53	\$ 86,372.69
XVIII	\$ 32.93	\$ 34.25	\$ 68,503.30	\$ 33.92	\$ 70,558.40	\$ 34.94	\$ 72,675.15	\$ 35.99	\$ 74,855.40	\$ 37.07	\$ 77,101.07	\$ 38.18	\$ 79,414.10	\$ 39.33	\$ 81,796.52	\$ 40.51	\$ 84,250.42	\$ 41.72	\$ 86,777.93	\$ 42.97	\$ 89,381.27
XIX	\$ 34.03	\$ 35.39	\$ 70,789.90	\$ 35.05	\$ 72,913.59	\$ 36.11	\$ 75,101.00	\$ 37.19	\$ 77,354.03	\$ 38.31	\$ 79,674.65	\$ 39.45	\$ 82,064.89	\$ 40.64	\$ 84,526.84	\$ 41.86	\$ 87,062.64	\$ 43.11	\$ 89,674.52	\$ 44.41	\$ 92,364.76
XX	\$ 35.17	\$ 36.57	\$ 73,145.59	\$ 36.22	\$ 75,339.96	\$ 37.31	\$ 77,600.16	\$ 38.43	\$ 79,928.17	\$ 39.58	\$ 82,326.01	\$ 40.77	\$ 84,795.79	\$ 41.99	\$ 87,339.66	\$ 43.25	\$ 89,959.85	\$ 44.55	\$ 92,658.65	\$ 45.88	\$ 95,438.41
XXI	\$ 36.26	\$ 37.71	\$ 75,429.91	\$ 37.35	\$ 77,692.80	\$ 38.47	\$ 80,023.59	\$ 39.63	\$ 82,424.30	\$ 40.82	\$ 84,897.02	\$ 42.04	\$ 87,443.93	\$ 43.30	\$ 90,067.25	\$ 44.60	\$ 92,769.27	\$ 45.94	\$ 95,552.35	\$ 47.32	\$ 98,418.92
XXII	\$ 37.36	\$ 38.86	\$ 77,714.22	\$ 38.48	\$ 80,045.65	\$ 39.64	\$ 82,447.01	\$ 40.83	\$ 84,920.43	\$ 42.05	\$ 87,468.04	\$ 43.31	\$ 90,092.08	\$ 44.61	\$ 92,794.84	\$ 45.95	\$ 95,578.69	\$ 47.33	\$ 98,446.05	\$ 48.75	\$ 101,399.43
XXIII	\$ 38.47	\$ 40.01	\$ 80,022.33	\$ 39.63	\$ 82,423.00	\$ 40.82	\$ 84,895.69	\$ 42.04	\$ 87,442.56	\$ 43.30	\$ 90,065.83	\$ 44.60	\$ 92,767.81	\$ 45.94	\$ 95,550.84</						

MEMORANDUM – OFFICE OF THE HUMAN RESOURCE DIRECTOR

TO: Board of Selectmen
FROM: Robin Reade, HR Director
RE: Recruitment of Town Administrator
DATE: February 27, 2025
CC: Carter Terenzini, Interim Town Administrator

QUESTIONS TO SELECTBOARD ON RECRUITING TOWN ADMINISTRATOR

General Conversation for Thursday's work session.

1. What type of recruitment process do you want to use?
 - a. In-house - can be time consuming requiring time commitment
 - b. External – recruitment agency
 - c. Hybrid – conduct recruitment in conjunction with an outside organization
 - d. Fellow and mentorship
 - e. Initial screening, done by individual, panel, or complete Board
2. What is the geographical scope for recruitment – local, regional (NH, VT, ME), national?
3. Do you want input on profile characteristics from Department Heads, Boards, Commissions or Committees?

Individual interviews with members of the Selectboard and Human Resources
Topics for Discussion:

When faced with a vacancy of the Town Administrator position, the Select Board needs to carefully consider the qualities, expertise, and experience it hopes to find in a new Administrator.
Review the following skill sets and please rank in order of importance.

- a. Knowledge of municipal management and budgeting
- b. Technology
- c. Leadership and direction
- d. People skills
- e. Confidentiality
- f. Accountability
- g. Ethical and Moral compass
- h. Provide professional advice and guidance
- i. Goals and objectives achieved
- j. Communication skills
- k. Decision making ability

4. What authority will be given to the Town Administrator?
5. What should the chain of communication look like?

- See attached recruitment timeline.

**Town of Moultonborough
OFFICE OF ADMINISTRATION**
6 Holland Street • PO Box 139 • Moultonborough, NH 03254
PHONE 603.476.2347 FAX 603.476.5835

Recruitment timeline and target dates:

2/27-3/4

Work session review of HR memo and scheduling of individual interviews with Select Board.

3/20

Review of TA job description and TA Profile

3/27

Work session discussion TA/SB Policy Amendments for consistency with job description

3/30

Advertise for TA

4/30

Resume deadline

6/15

TA hired